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I. INTRODUCTION

A point vortex system is a model of continuous two-
dimensional �2D� inviscid fluid dynamics. In fact, a point
vortex is an idealized vortex of real vortex in 2D fluids.
However, the point vortex system carries some important
properties of continuous 2D inviscid fluid dynamics �1,2�. It
is formulated as a Hamilton dynamical system �3,4�. There-
fore, a standard statistical mechanical theory was developed
by Onsager �5�. In his formulation, states of a point vortex
system are classified into two categories: one is positive tem-
perature states, and the other is negative temperature states.
In the positive temperature states, point vortices are distrib-
uted in a scattered way. However, in the negative tempera-
ture states, huge vortices are formed in time evolution. The
negative temperature states are phenomena observed in
Earth’s surface—that is, the formation of huge vortices, such
as hurricanes and typhoons. Onsager’s ideas are recently re-
viewed by Eyink and Sreenivasan �6�. Since Onsager, re-
searchers have considered the equilibrium statistical mechan-
ics of point vortex systems. The main purpose of their
studies is to construct the equilibrium states of a point vortex
system �7–12�. The Poisson-Boltzmann equation is used to
obtain the equilibrium states. For some cases, the equilib-
rium states are analytically obtained �13�.

The next stage of the statistical mechanics of point vortex
systems focuses on nonequilibrium properties. Standard non-
equilibrium statistical mechanics goes toward kinetic theory.
Two authors have studied kinetic theory of point vortex sys-
tem: i.e., Marmanis �14� and Chavanis �15�. Marmanis con-
sidered a gas of binary pairs of positive and negative point
vortices. Chavanis considered a gas of point vortices with the
same circulation. In this paper, we are interested in Cha-
vanis’s results.

The system considered by Chavanis is closely related to
the system of non-neutral plasmas in the Malmberg trap
�16–22�. The dynamics of the non-neutral plasma in the
Malmberg trap is described by the 2D Euler equation in a
circular domain, using the guiding center approximation.
Thus, if we are interested in non-neutral plasma in the ex-
perimental situation, as an idealized model, we should con-
sider a point vortex system in a circular domain. From ex-
periments on non-neutral plasmas, many interesting
properties of vortex dynamics of the 2D Euler equation are

now known �16–22�: �i� diocotron instability �i.e., in other
words, Kelvin-Helmholtz instability�, �ii� violent relaxation,
�iii� slow decay, �iv� vortex crystals, and �v� merger of vor-
tices. As a theoretical aspect, recently the slow decay was
numerically analyzed using the point vortex system �23–25�.
Although there is a difference in the boundary condition,
these properties introduced here are common in the point
vortex systems in an infinite plane.

Back to the point vortex systems in an infinite plane, Cha-
vanis derived serveral kinetic equations for the point vortex
system in an infinite plane, in which the point vortices have
the same circulation, and estimated interesting physical
quantities, like the diffusion coefficient and the drift term, by
using his kinetic equations �15,26,27�. In this paper, we de-
velop a kinetic theory through the Bogoliubov-Born-Green-
Kirkwood-Yvon �BBGKY� hierarchy �28–31� �for the text,
see Ref. �32��. We compare our theory with that by Chavanis.
The main purposes of this paper is as follows: �i� We derive
a kinetic equation �i.e., the Landau equation�, which is iden-
tical to that by Chavanis �15,27�. �ii� Futhermore, we derive
a kinetic equation �i.e., the Balescu-Lenard equation�, which
includes more correlation—i.e., the collective effects. �iii�
We show that for large N, this kinetic equation is reduced to
the Landau equation.

The organization of this paper is as follows. In Sec. II, the
equations of motion for a point vortex system in an infinite
plane are presented. In Sec. III, the treatment of the BBGKY
hierarchy is shown. Two key equations for time evolution of
the distribution function and the correlation function are de-
rived. Using these equations, we derive the Vlasov equation,
the Landau equation and the Balescu-Lenard equation for
point vortex system in an infinite plane. It is shown that for
large N, the Balescu-Lenard equation is reduced to the Lan-
dau equation. In Sec. IV, we summarize the results of this
paper and give future problems.

II. EQUATIONS OF MOTION

Let us consider a point vortex system, which consists of N
point vortices with the same circulation � in an infinite plane.
The Hamiltonian of this system is given by
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H = −
�2

4�
�
i�j

N

ln�ri − r j� , �1�

where ri= �xi ,yi�. The equations of motion are written by
using the Hamiltonian:

�
dxi

dt
=

�H

�yi
, �

dyi

dt
= −

�H

�xi
. �2�

Thus, the velocities of the ith point vortex in the x and y
directions are given by

vi
�x� =

�

2�
�
j�i

N
�ri − r j�y

�ri − r j�2
, �3�

vi
�y� = −

�

2�
�
j�i

N
�ri − r j�x

�ri − r j�2
. �4�

It is convenient to rewrite the velocity in the following form:

vi = �
j�i

v�j → i� , �5�

where

v�j → i� = −
�

2�
z �

ri − r j

�ri − r j�2
=

�

2�

1

�ri − r j�2
J · rij , �6�

J is the 2�2 symplectic matrix

J = � 0 1

− 1 0
� , �7�

z is the unit vector along the z axis, and rij =ri−r j. This
system has several conserved quantities: �i� energy—i.e., H
=E; �ii� angular impulse—i.e., I=��i=1

N �ri�2; �iii� linear
impulse—i.e., L=��i=1

N ri.
Now we define the vorticity ��r ; t�:

��r;t� = �
i=1

N

���r − ri� , �8�

and the stream function ��r ; t�,

��r;t� = −
�

2�
�
i=1

N

ln�r − ri� . �9�

Using the stream function, the velocity of the ith point vortex
is given by

vi = − z � ���r = ri;t� = J · ���r = ri;t� . �10�

It is easily confirmed that the vorticity satisfies the two-
dimensional Euler equation

��

�t
+ v · �� = 0. �11�

III. BBGKY HIERARCHY

We define the distribution function of N-point vortex
systems:

F = F�r1,r2, . . . ,rN;t� . �12�

The Liouvile equation for N-point vortex systems in an infi-
nite plane is given by

�F

�t
= LF , �13�

where

L = �
i=1

N
1

�
� �H

�xi

�

�yi
−

�H

�yi

�

�xi
� . �14�

The Liouvillian L is rewritten as follows:

L = − �
i=1

N

�
j�i

�vx�j → i�
�

�yi
+ vy�j → i�

�

�xi
�

= − �
i�j

N

v�j → i� · �ij , �15�

where �i=
�

�ri
and �ij =�i−� j. Now we have used the fact

that v�j→ i�=−v�i→ j�. We define Lij as

Lij = − v�j → i� · �ij

= − v�j → i� · �i − v�i → j� · � j . �16�

Thus, the Liouvillian becomes

L = �
i�j

N

Lij . �17�

We define the s-body reduced distribution function

fs�r1, . . . ,rs� =
N!

�N − s�! 	 drs+1drs+2 . . . drN

�F�r1, . . . ,rs,rs+1, . . . ,rN� . �18�

Carrying out a usual manipulation of the BBGKY hierarchy
�see �32� for details�, we obtain the following time-evolution
equations for the s-body reduced distribution function
fs�r1 , . . . ,rs�:

�t f0 = 0 �19�

and

�t f s�r1, . . . ,rs� = �
i�j

Lij f s�r1, . . . ,rs�

+ �
i=1

s 	 drs+1 Li,s+1fs+1�r1, . . . ,rs+1� . �20�

This is the BBGKY hierarchy for the s-body reduced distri-
bution functions. The time evolution of the s-body reduced
distribution function is determined by the s-body reduced
distribution function and the �s+1�-body reduced distribu-
tion function.

For s=1, we have
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�t f1�r1� =	 dr2 L12f2�r1,r2� . �21�

Now we use the two-body and three-body correlation func-
tions g2�r1 ,r2� and g3�r1 ,r2 ,r3�. The two- and three-body
correlation functions are related to the two- and three-body
reduced distribution functions as follows:

f2�r1,r2� = f1�r1�f1�r2� + g2�r1,r2� , �22�

f3�r1,r2,r3� = f1�r1�f1�r2�f1�r3� + f1�r1�g2�r2,r3�

+ f1�r2�g2�r1,r3� + f1�r3�g2�r1,r2�

+ g3�r1,r2,r3� . �23�

Thus, the correlation function describes the deviation from
the product of the reduced distribution functions. Inserting
Eq. �22� into Eq. �21�, we obtain

�t f1�r1� =	 dr2 �L12f1�r1�f1�r2� + L12g2�r1,r2�� . �24�

Inserting Eqs. �22� and �23� into Eq. �20�, the time-evolution
equation of f2�r1 ,r2� is obtained:

�t f2�r1,r2� = L12�f1�r1�f1�r2� + g2�r1,r2��

+	 dr3 
L13� f1�r1�f1�r2�f1�r3�

+ f1�r1�g2�r2,r3� + f1�r2�g2�r1,r3�

+ f1�r3�g2�r1,r2� + g3�r1,r2,r3�� + �1 ⇔ 2�� .

�25�

Similarly, using Eq. �24�, inserting Eq. �22� into Eq. �25�,
and manipulating the resulting equations, the time-evolution
equation of g2�r1 ,r2� is obtained:

�tg2�r1,r2� = L12f1�r1�f1�r2� + L12g2�r1,r2�

+	 dr3 
L13f1�r1�g2�r2,r3�

+ L23f1�r2�g2�r1,r3� + �L13 + L23�

��f1�r3�g2�r1,r2� + g3�r1,r2,r3��� . �26�

Equation �26� is slightly different from the recent result by
Chavanis �27�, who also developed a BBGKY hierarchy for
the point vortex gas. The reason for these differences is un-
known.

Following Ref. �27�, we shall close the hiearchy of
BBGKY equations by considering an expansion in powers of
1 /N for N→ +	. In the large N-limit—i.e., the hydrody-
namic limit—we should preserve the total circulation 
.
Thus, the circulation � is �=
 /N, where 
=const. The order
estimate of each function is f �1, g2�1/N, ��1/N, and
Lij �1/N. Thus, in Eq. �26�, the first term is �1/N. The
second term is �1/N2. The integral part is �1/N, since the
integration over r3 gives an N factor. The term including the
term g3 is �1/N2. In the following treatment, the function g3
is omitted, since we cut the correlation—i.e., truncate a chain
of the BBGKY hierarchy.

A. Vlasov equation

A mean-field approximation is performed by neglecting
the term of the correlation function in Eq. �24�:

�t f�r1� =	 dr2L12f�r1�f�r2� . �27�

Using Eq. �16�, we obtain

� f�r1�
�t

+ v1� · �1f�r1� = 0, �28�

where

v1� =	 dr2f�r2��vx�2 → 1�i + vy�2 → 1�j� . �29�

This is a mean-field equation for the point vortex system in
an infinite plane. It is analogous to the Vlasov equation in
plasma physics and in stellar dynamics. We should note that
this equation �28� is nothing but the 2D Euler equation.

B. Landau equation

The next-higher-order approximation is started with Eq.
�24� preserving the correlation function

�t f�r1� =	 dr2 �L12f�r1�f�r2� + L12g2�r1,r2�� . �30�

The right-hand-side of Eq. �30� is upto the order 1 /N2. For
the correlation function g2�r1 ,r2�, we approximate Eq. �26�
upto the order 1 /N:

�tg2�r1,r2� = L12f�r1�f�r2� +	 dr3�L13 + L23�f�r3�g2�r1,r2�

= L12f�r1�f�r2� + �− v1� · �1 − v2� · �2�

�g2�r1,r2� . �31�

Therefore, the correlation function is advected by v1� and
v2�. Equation �31� is formally solved as

g2�r1,r2;t� = U12�t�g2�r1,r2;0� + 	
0

t

d� U12���L12f�r1;t − ��

�f�r2;t − �� , �32�

where

U12��� = exp�− 	
0

�

dt�v1� · �1 − 	
0

�

dt�v2� · �2� .

�33�

Inserting Eq. �32� into Eq. �30�, we obtain

�t f�r1� =	 dr2 L12f�r1�f�r2� +	 dr2 L12U12�t�g2�r1,r2;0�

+	 dr2 	
0

t

d� L12U12���L12f�r1;t − ��f�r2;t − �� .

�34�

On the right-hand side of Eq. �34�, the second term vanishes
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for large t �i.e., the correlation decays�; thus, we have

�t f�r1� =	 dr2 L12f�r1�f�r2�

+	 dr2 	
0

t

d� L12U12���L12f�r1;t − ��f�r2;t − �� .

�35�

We have to evaluate the following term:

Kcoll
�L� 
f f� =	 dr2 	

0

t

d� L12U12���L12f�r1;t − ��f�r2;t − �� .

�36�

Using the approximation

f�r1;t − ��f�r2;t − �� � U12�− ��f�r1;t�f�r2;t� , �37�

we obtain

Kcoll
�L� 
f f� � 	 dr2 	

0

t

d� L12U12���L12U12�− ��f�r1;t�f�r2;t�

= �1 ·	 dr2 	
0

t

d� v1�t�v1�t − ���12f�r1;t�f�r2;t� .

�38�

The kinetic equation obtained here is

� f�r1�
�t

+ v1� · �1f�r1� = �1 ·	 dr2 	
0

t

d� v1�t�v1�t − �� · �12

�f�r1;t�f�r2;t� , �39�

where v1�t� is advected as v1�t−��=U12���v1�t�U12�−�� and
ri�t−��=ri�t�−�0

�dt� vi�(ri�t− t�� , t− t�). This equation is
analogous to the Landau equation in plasma physics and in
stellar dynamics. This equation coincides with the result of
�15,27�. As shown in Ref. �15�, this equation conserves the
angular impulse and the linear impulse. If we use the
Markovianization—i.e., extending the time integral to
infinity—we obtain

Kcoll
�L� 
f f��1 ·	 dr2 	

0

	

d� v1�t�v1�t − �� · �12f�r1;t�f�r2;t� .

�40�

However, it is not known whether the Markovianization is
assured or not, since point vortex dynamics sometimes gives
long-time tail: i.e., the strong correlation. In particular, in
Ref. �24�, it is shown that the diffusion process for the point
vortex exhibits Lévy flight.

Chavanis estimated the relaxation time trelax by using the
estimate of the diffusion coefficient �15� as trelax
�N / �lnN�tD, where the dynamical time is tD���−1

�R2 /
, which is the time determined by the mean rotation
time, and R is the size of the vortex. His estimate of Ref. �15�
would be incorrect. In the kinetic theory, the N dependence
of trelax is determined by the N dependence of the collision
term: i.e., Kcoll

�L� �O�1/N�. This gives trelax�NtD. Recently

Chavanis and Lemou used this estimate �26,27�. This esti-
mate is consistent with the numerical result by Kawahara and
Nakanishi for the system in a circular domain �24�.

C. Balescu-Lenard equation

In this subsection, we derive a kinetic equation for point
vortex systems in an infinite plane, which is analogous to the
Balescu-Lenard equation in plasma physics. The starting
point is the time-evolution equations of the one-body re-
duced distribution function f�r1� and the two-body correla-
tion function g2�r1 ,r2�:

�t f�r1� =	 dr2 �L12f�r1�f�r2� + L12g2�r1,r2�� , �41�

and

�tg2�r1,r2� = L12f�r1�f�r2� + L12g2�r1,r2�

+	 dr3 
L13f�r1�g2�r2,r3� + L23f�r2�g2�r1,r3�

+ �L13 + L23��f�r3�g2�r1,r2��� . �42�

The two-body correlation function is formally solved as

g2�r1,r2;t� = 	
0

t

d� U12��� 
L12U12�− ��f�r1�f�r2�

+ L12U12�− ��g2�r1,r2�

+	 dr3 �L13U12�− ��f�r1�g2�r2,r3�

+ L23U12�− ��f�r2�g2�r1,r3��� . �43�

The kinetic equation is formally obtained as

� f1

�t
+ v1� · �1f1 =	 dr2 L12g2�r1,r2;t� . �44�

If, as done for plasma systems in Ref. �32�, we set

g2�r1,r2;t� = g2�r1 − r2;t� =	 dk exp�ik · �r1 − r2��g̃2�k;t� ,

�45�

the right-hand side of Eq.�44�—i.e., the collision term—
vanishes:

	 dr2L12g2�r1,r2;t�

=
1

�
	 dr2 ��1V�r1 − r2��{ · J · �1g2�r1,r2�

=
1

�
	 dr2 	 dk exp�ik · �r1 − r2��Ṽ�k��ik�{ · J�1

�	 dk� exp�ik� · �r1 − r2��g̃2�k�;t�

=
�2��2

�
	 dk Ṽ�k� k{ · J · k g̃2�− k;t� = 0, �46�
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since k{ ·J ·k=0. Here “A{” means the transpose of the vec-
tor A. In Eq. �45�, the homogeneity is assumed. The above
result shows that inhomogeneity is important for point vortex
systems. To not make the collision term vanish, we change
the definition of the Fourier transform of g2�r1 ,r2 ; t�. There-
fore, we set

g2�r1,r2;t� =	 dk1	 dk2 exp�ik1 · r1 + ik2 · r2�g̃2�k1,k2;t� .

�47�

L12 can be rewritten in the form

L12 =
1

�
��1V�r1 − r2��{ · J · �12, �48�

where

V�r1 − r2� = −
�2

2�
ln�r1 − r2� . �49�

Now we consider the Fourier transform of the function V�r�,
where r=r1−r2:

V�r� =	 dk Ṽ�k�eik·r,

Ṽ�k� =
1

�2��2 	 drV�r�e−ik·r. �50�

The Fourier transform of V�r� is evaluated as follows:

Ṽ�k� = −
�2

�2��3 	 dr ln�r�e−ik·r

= −
�2

�2��3	
0

	

r dr 	
0

2�

d� ln re−ikr cos���

= −
�2

�2��
2	

0

	

dr rlnrJ0�kr�

= −
�2

�2��2�� r

k
ln rJ1�kr��

0

	

−
1

k
	

0

	

dr J1�kr�� . �51�

We have to evaluate the following limit:

lim
r→	

r

k
ln rJ1�kr� . �52�

In fact, for large r, this function oscillates with amplifying its
absolute value. Therefore, we suppose that the limiting value
of this function is zero. Alternatively, we insert a conver-
gence factor:

lim
→+0

	
0

	

dr r ln rJ0�kr�e−r. �53�

As a result, we have

Ṽ�k� =
�2

�2��2

1

k2 . �54�

The dependence of Ṽ�k��1/k2 is a typical behavior of Cou-
lomb systems.

Now we evaluate each term an the right hand side of
Eq. �43�:

�A� = 	
0

t

d� U12���L12U12�− ��f1f2

= − 	
0

t

d� v1�t − �� · �12f1f2

=
1

�
	

0

t

d�	 dk exp�ik · �r1 − r2� − ik · 	�

dt�v1�

+ ik · 	�

dt�v2��Ṽ�k��ik�{ · J · �12f1f2, �55�

�B� = 	
0

t

d� U12���L12U12�− ��g2�r1,r2;t�

= − 	
0

t

d� v1�t� · �12g2�r1,r2;t�

=
1

�
	

0

t

d�	 dk exp�ik · �r1 − r2� − ik · 	�

dt�v1�

+ ik · 	�

dt�v2��Ṽ�k��ik�{ · J · �12g2�r1,r2;t� ,

�56�

�C� = 	
0

t

d� U12��� 	 dr3L13U12�− ��f1g2�r2,r3;t�

=
1

�2��2�	 dR	 dR�	
0

t

d�	 dk	 dk�

� exp�ik · �r1 − R�� + ik� · �r2 − R�

− ik · 	�

v1��dt�

� Ṽ�k���ik�{ · J · �1f1�g2�R,R�;t� , �57�

�D� = 	
0

t

d� U12��� 	 dr3L23U12�− ��f2g2�r1,r3;t�

=
1

�2��2�
	 dR	 dR�	

0

t

d�	 dk	 dk�

� exp�ik� · �r1 − R� + ik · �r2 − R�� − ik · 	�

v2�dt��
�Ṽ�k���ik�{ · J · �2f2�g2�R,R�;t� . �58�
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The order estimate of these terms is as follows:

�A� �
1

N
, �B� �

1

N2 , �C� �
1

N
, �D� �

1

N
. �59�

Therefore, we can neglect the term of �B�.
Then we obtain the following integral equation:

g2�r1,r2;t� = q�r1,r2;t� +	 dR	 dR�

�K�
r1,r2�,
R,R���g2�R,R�;t� , �60�

where

q�r1,r2;t� =
1

�
	

0

t

d�	 dk exp�ik · �r1 − r2� − ik · 	�

dt�v1�

+ ik · 	�

dt�v2��Ṽ�k��ik�{ · J · �12f1f2, �61�

and

K�
r1,r2�,
R,R���

=
1

�2��2�
	

0

t

d�	 dk	 dk� exp�ik · �r1 − R��

+ ik� · �r2 − R� − ik · 	�

�v1�dt��

� Ṽ�k��ik�{ · J · �1f1 +
1

�2��2�
	

0

t

d�	 dk	 dk�

�exp�ik� · �r1 − R� + ik · �r2 − R��

− ik · 	�

v2�dt��Ṽ�k��ik�{ · J · �2f2. �62�

The function K�
r1 ,r2� , 
R ,R��� is called the integral kernel
of the integral equation. This integral equation takes the form
of the Fredholm integral equation of the second kind. Thus,
how to solve it is known �33�. Now, for brevity, we set x
= �r1 ,r2� and y= �R ,R��. The integral equation, which
should be solved, is

g2�x;t� = q�x;t� + �	 dy K�x,y�g2�y;t� . �63�

If the required conditions are satisfied, this integral equation
is solved as

g2�x;t� = q�x;t� +	 dy ��x,y;�0�q�y;t� . �64�

The function ��x ,y ;�� is called the resolvent. �0 is chosen
to make the series convergent. For large N, the kernel K�x ,y�
is �1/N. Thus, for large N, we can take as �0=1. Therefore,
if the kernel is bounded, for large N, we get a convergent
series. The resolvent is given by

��x,y;�� =
D�x,y;��

D���
, �65�

where

D��� = 1 − �	 ds K�s,s� +
�2

2!
	 	 ds1ds2 K�s1 s2

s1 s2
� + ¯

+
�− ��p

p!
	 ¯	 ds1 ¯ dsp K�x s1 ¯ sp

y s2 ¯ sp
�

+ ¯ , �66�

D�x,y;�� = K�x,y� − �	 ds K�x s

y s
�

+
�2

2!
	 	 ds1ds2 K�x s1 s2

y s2 s2
� + ¯

+
�− ��p

p!
	 ¯	 ds1 ¯ dsp K�x s1 ¯ sp

y s2 ¯ sp
�

+ ¯ , �67�

and

K�s1 s2 ¯ sp

t1 t2 ¯ tp
� = �

K�s1,t1� K�s1,t2� ¯ K�s1,tp�
K�s2,t1� K�s2,t2� ¯ K�s2,tp�

¯ ¯ ¯ ¯

K�sp,t1� K�sp,t2� ¯ K�sp,tp�
� .

�68�

Thus, a derived kinetic equation is

� f1

�t
+ v1� · �1f1 =	 dr2 L12g2�r1,r2;t� , �69�

where

g2�r1,r2;t� = q�r1,r2;t� +	 dR	 dR�

���
r1,r2�,
R,R��;�0� q�R,R�;t� . �70�

This kinetic equation for point vortex system is an analog of
the Balescu-Lenard equation in plasma physics. Unlike the
Balescu-Lenard equation for plasmas, the collision term ob-
tained does not have the dielectric function, but has addi-
tional terms compared with the Landau collision term. We
note an important point which manifests a difference be-
tween point vortex systems and plasma systems. The kernel
has the factor 1 /N, which comes from the circulation �
=
 /N. Thus, the resolvent is expanded in terms of the
1/N-factor. The integral is just the Fourier transform. There-
fore, the integral is order of 1. In Eq. �64�, the second term
on the right-hand side is smaller than the first term as the
order O�1/N�. Therefore, for large N, we obtain

g2�r1,r2;t� � q�r1,r2;t� . �71�

With this result, the collision term is reduced to the Landau
collision term: i.e., Eq. �38�. Therefore, for point vortex sys-
tems, the Balescu-Lenard collision term is reduced to the
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Landau collision term, because of large N-effect: i.e., the
absence of the dielectric function. This is a big difference
between point vortex systems and plasma systems. The
screening effect does not appear in point vortex systems,
while the screening effect is important for the Balescu-
Lenard equation for plasmas. On the Balescu-Lenard colli-
sion term in plasma physics, see Ref. �32� for comparison.

In the above paragraph, we showed how to solve the in-
tegral equation �63� formally. But the required conditions
have not yet been checked. Let us look at the required con-
ditions. First, to show that the operator T,

Tg2 =	 dy K�x,y�g2�y� , �72�

is bounded is important. The integral equation is symboli-
cally given by

�1 − �T�g2 = q . �73�

The formal solution is obtained by the expansion

g2 = �
n=0

	

��T�nq . �74�

The Fredholm theory for integral equation basically uses the
boundedness of the operator and the expansion: i.e., Eq. �74�.
This expansion is assured by the boundedness of the operator
T. The expansions of Eqs. �66� and �67� are also due to the
boundedness of the operator T. As the second point, unlike
usual Fredholm integral equations, the integral domain in eq.
�63� is infinite. If the integral domain is finite and the kernel
is bounded, the boundedness of operators is easily shown.
For our case, since the integral domain is infinite, we should
treat the operator T carefully. These two points—i.e., the
boundedness of the operator T and the infinite integral
domain—should be checked and be treated in a rigorous
way. However, in this paper, we do not pursue a rigorous
discussion. These problems are reserved for mathematical
physicists.

IV. CONCLUDING REMARKS

We have derived a kinetic equation for point vortex sys-
tems in an infinite plane. The kinetic equations derived are
analog of the Landau equation and the Balescu-Lenard equa-
tion. Equation �39� coincides with the result of Chavanis
�15,27�. Equation �39� possesses several interesting proper-
ties, which were shown in Ref. �15�. The Balescu-Lenard
equation �69� is a new kinetic equation. Furthermore, we
have shown that for large N, the Balescu-Lenard equation
�69� is reduced to the Landau equation �39�. Therefore, we
can conclude that for point vortex systems in an infinite
plane, without symmetrical restriction �such as axisymmetric
and unidirectional flows�, the most generalized kinetic equa-
tion is Eq. �39�.

The following point would be the interesting point of the
derived kinetic equation, �39�: The interaction among point

vortices is long range—i.e., logarithmic. In addition, the de-
rived kinetic equation is analogous to the Landau equation
for 3D plasmas. However, the collision term for point vortex
systems may not diverge. In Ref. �27�, for the axisymmetric
case, the collision term does not diverge. This is a symptom
of the nondivergence of the collision term for the Landau
equation. The reason of this is that the difference between the
integration of the collision term—i.e., Eq. �38�—and that of
the Landau collision term for 3D plasmas. The former has
the integration with respect to r2 �i.e., position�, while the
latter has the integration with respect to r2 and v2 �i.e.,
velocity�.

For the point vortex systems, the expression of the energy
spectrum was derived for the system in an infinite plane �34�
and for the system in a circular domain �35�. The energy
spectrum is closely related to the diffusion coefficient �36�.
We will be able to compare the theory of Ref. �36� with the
kinetic theory in this paper.

Another interesting point is the following: our kinetic
theory is not directly connected to Onsager’s temperature. As
shown in Ref. �37� for two-sign point vortex systems, On-
sager’s temperature affects nonequilibrium properties: i.e.,
decaying process. To find this connection leads to understand
nonequilibirum properties: i.e., classification of nonequilib-
rium processes.

The most interesting problem, which we would like to
attack with Eq. �39�, is a decaying property of vortex crystals
in non-neutral plasmas. Unfortunately, Eq. �39� is for the
system in an infinite plane, not for the system in a circular
domain. Thus, it is not for an experimental situation. But Eq.
�39� surely captures the nature of phenomena for the system
in a circular domain in some extent. Many experimental re-
sults show that the vortex crystals are quasi-stationary states.
To analyze quasistationary states, recent advances in long-
range interaction systems would be some hints for us, such
as a study of the Hamiltonian mean field �HMF� model. The
HMF model exhibits a slow decay, in which the state is stuck
in a quasistationary state, as well as in point vortex systems.
For the HMF model, the slow decay is analyzed by the Vla-
sov equation. The quasistationary state is very near to a
stable solution of the Vlasov equation. The estimate of some
quantities—i.e., the algebraic decay and the tail of the veloc-
ity distribution function, etc,—is carried out �38� and is
tested by a numerical simulation �39�. Their analysis would
be useful for our problems. However, to this end, we should
know the behavior of the 2D Euler equation, instead of the
Vlasov equation for the usual kinetic theory of particle
systems.

ACKNOWLEDGMENTS

The author thanks Professor H. Tomita for continuous en-
couragement and Professor Y. Kiwamoto for introducing vor-
tex dynamics. The author is grateful to an anonymous referee
for pointing out Ref. �27� and numerous other helpful
suggestions.

KINETIC THEORY OF POINT VORTEX SYSTEMS FROM… PHYSICAL REVIEW E 76, 046312 �2007�

046312-7



�1� A. J. Chorin, Vorticity and Turbulence �Springer-Verlag, Ber-
lin, 1994�.

�2� P. K. Newton, The N-Vortex Problem: Analytical Techniques
�Springer, New York, 2000�.

�3� H. von Helmholtz, Philos. Mag. 4, 485 �1858�.
�4� G. R. Kirchhoff, Vorlesungen über Mathematische Physik

�Teubner, Leipzig, 1876�, Vol. I.
�5� L. Onsager, Nuovo Cimento, Suppl. 6, 279 �1949�.
�6� G. L. Eyink and K. R. Sreenivasan, Rev. Mod. Phys. 78, 87

�2006�.
�7� S. Kida, J. Phys. Soc. Jpn. 39, 1395 �1975�.
�8� G. Joyce and D. Montgomery, J. Plasma Phys. 10, 107 �1973�.
�9� Y. B. Pointin and T. S. Lundgren, Phys. Fluids 19, 1459

�1976�.
�10� T. S. Lundgren and Y. B. Pointin, J. Stat. Phys. 17, 323 �1977�.
�11� C. E. Seyler Jr., Phys. Fluids 19, 1336 �1976�.
�12� P. A. Smith and T. M. O’Neil, Phys. Fluids B 2, 2961 �1990�.
�13� A. C. Ting, H. H. Chen, and Y. C. Lee, Physica D 26, 37

�1987�.
�14� H. Marmanis, Proc. R. Soc. London, Ser. A 454, 587 �1998�.
�15� P. H. Chavanis, Phys. Rev. E 64, 026309 �2001�.
�16� C. F. Driscoll and K. S. Fine, Phys. Fluids B 2, 1359 �1990�.
�17� K. S. Fine, A. C. Cass, W. G. Flynn, and C. F. Driscoll, Phys.

Rev. Lett. 75, 3277 �1995�.
�18� D. Z. Jin and D. H. E. Dubin, Phys. Rev. Lett. 80, 4434

�1998�.
�19� D. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll,

Phys. Fluids 11, 905 �1999�.
�20� Y. Kiwamoto, K. Ito, A. Sanpei, and A. Mohri, Phys. Rev.

Lett. 85, 3173 �2000�.
�21� A. Sanpei, Y. Kiwamoto, K. Ito, and Y. Soga, Phys. Rev. E 68,

016404 �2003�.

�22� Y. Soga, Y. Kiwamoto, A. Sanpei, and J. Aoki, Phys. Plasmas
10, 3922 �2003�.

�23� R. Kawahara and H. Nakanishi, J. Phys. Soc. Jpn. 75, 054001
�2006�.

�24� R. Kawahara and H. Nakanishi, J. Phys. Soc. Jpn. 78, 074001
�2007�.

�25� M. M. Sano, Y. Yatsuyanagi, Y. Yoshida, and H. Tomita, J.
Phys. Soc. Jpn. 76, 064001 �2007�.

�26� P. H. Chavanis and M. Lemou, e-print arXiv:cond-mat/
0703023.

�27� P. H. Chavanis �unpublished�.
�28� N. N. Bogoliubov, J. Phys. �Moscow� 10, 257 �1946�.
�29� M. Born and H. S. Green, Proc. R. Soc. London, Ser. A 188,

10 �1946�.
�30� J. G. Kirkwood, J. Chem. Phys. 14, 180 �1946�.
�31� J. Yvon, La théorie Statistique des fluides et l’ équation d’ état,

Actualités scientifiques et industrielles, No. 203 �Hermann,
Paris, 1935�.

�32� R. Balescu, Statistical Dynamics: Matter out of equilibrium
�Imperial College Press, London, 1997�.

�33� R. Courant and D. Hilbert, Methoden der Mathematischen
Physik, 2nd ed. �Springer-Verlag, Berlin, 1931�.

�34� E. A. Novikov, Sov. Phys. JETP 41, 937 �1976�.
�35� T. Yoshida and M. M. Sano, J. Phys. Soc. Jpn. 74, 587 �2005�.
�36� J. B. Taylor and B. McNamara, Phys. Fluids 14, 1492 �1971�.
�37� Y. Yatsuyanagi, Y. Kiwamoto, H. Tomita, M. M. Sano, T.

Yoshida, and T. Ebisuzaki, Phys. Rev. Lett. 94, 054502
�2005�.

�38� F. Bouchet and T. Dauxois, Phys. Rev. E 72, 045103�R�
�2005�.

�39� Y. Y. Yamaguchi, F. Bouchet, and T. Dauxois, J. Stat. Mech.:
Theory Exp. 2007, P01020.

MITSUSADA M. SANO PHYSICAL REVIEW E 76, 046312 �2007�

046312-8


